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Scaling laws and dispersion equations for Lévy particles in one-dimensional fractal porous media
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Over some range of scales natural porous media often display a fractal Eulerian velocity or conductivity
field. If one assumes the fractal conductivity gives rise to fractal drift velocities, then particle paths may be
studied in the framework of stochastic differential equations (SODEs). On the microscale, trajectories are
modeled as solutions to a SODE with Markovian, stationary, ergodic drift subject to a fluctuating Lévy force.
The Lévy force allows for self-motile particles such as flagellated microbes. On the mesoscale the trajectories
are modeled as solutions to a SODE with Lévy (fractal) drift and diffusion arising from the microscale
asymptotics. On the macroscale the process is driven by the asymptotics of the mesoscale drift without
diffusion. Asymptotic scaling laws and dispersion equations are presented.
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I. INTRODUCTION

Nature abounds with natural porous media [1,2] such as
tissues, cells, whole plants and animals, oil reservoirs, soils,
and even the earth’s upper mantle. Processes occurring in
such systems act from the atomic scale [3], where electrons
propagate through crystalline materials to the intermediate
scale, where blood profuses in the lung [4] to the global
scale, where magma migrates in the lithosphere [5]. Many of
these systems display a fractal character functionally over
some range of scales [6]. Typical examples are profusion in
the lung and groundwater flow [7].

In this contribution we examine the behavior of motile
particles in porous systems that have fractal functionality
between lower and upper fractal cutoffs (see Fig. 1). Below
the lower fractal cutoff (microscale or pore scale) we con-
sider the flow to be classical in the sense that the path line of
a particle will be considered to be the solution to a stochastic
ordinary differential equation (SODE) with stationary, er-
godic, Markov drift velocity, and to account for particles that
may be self-motile, such as microbes [8], we allow for dif-
fusion driven by an a-stable Lévy process [9-11]. If a=2 the
Lévy process becomes Brownian and the particles may be
inert.

Between the fractal cutoffs (mesoscale or Darcy scale)
the porous formation is assumed to have fractal functionality
dictated by the Eulerian velocity field. If the system is
Darcian with a linear constitutive relation between the con-
vective flux and gradient of potential (the coefficient of
proportionality is called the Darcy conductivity), then the
conductivity is assumed to have a fractal spatial structure
[7] which in turn induces the spatially fractal Eulerian
velocity. If the mesoscale flow is considered incompressible
and steady, then the drift velocity of a particle will be
the Eulerian velocity at the spatial point x when the
Lagrangian particle X(z) satisfies X(7;xp)=x. That is,
V(t)=v(X(¢;x,)), X(0)=x,, where v(x) is the Eulerian veloc-

1539-3755/2005/72(5)/056305(7)/$23.00

056305-1

PACS number(s): 47.55.Mh, 92.40.Cy

ity field and V(7) is the Lagrangian drift velocity. Under these
conditions the mesoscale drift velocity will in general be
statistically nonstationary but may possess stationary incre-
ments. The diffusive structure at the mesoscale is obtained
from the asymptotics of the microscale process.

On the macroscale we assume there is no additional drift;
that is, the physics are controlled solely by the asymptotic
behavior of the mesoscale process. We assume that above the
upper fractal cutoff the system is periodic [1].

The outline of the manuscript is as follows. In Sec. II we
review the classical properties of a Lévy process and use
these to develop the characteristic function for the integral of
such a process. Using this, we show that a displacement pro-
cess with Lévy Lagrangian velocity has integer fractal di-
mension and that the diffusion (Fokker-Planck) equation for
the transition density is spatially nonlocal but temporally lo-
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FIG. 1. (Color online) Gedanken experiment: micro-, meso-,

and macroscale domains; shaded, high conductivity, and white, low
conductivity.
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cal with time dependent dispersion coefficient.

Next we return to the multiscale problem for Secs.
II-VII. Section III defines the microscale stochastic differ-
ential equation that represents the temporal evolution of a
motile particle in a classical convective flow field within a
pore. A classical central limit theorem for a Brownian pro-
cess is coupled to a scaling law for Lévy processes and used
to upscale the particle trajectory from the pore to Darcy scale
(micro- to mesoscale). The resultant process is Lévy. In Sec.
IV the mesoscale Lévy diffusive process is combined with a
Lévy convective flux that represents the Lagrangian convec-
tive velocity through the mesoscale fractal porous body.
Scaling laws and the associated scale change are derived. In
Sec. V, by assuming a periodic macroscale we homogenize
the process at that scale. Section VI uses the characteristic
function for the upscaled process to derive a fractional dif-
fusion equation for the transition density with a time-
dependent diffusion coefficient in the macroscale. This equa-
tion is subsequently written in conservative form.

II. LEVY PROCESS

Consider the following stochastic ordinary differential
equation in one dimension:

X(r)=X(0) + f V(r)dr+ pL(t), t=0, (2.1)

0
where the stochastic processes {V(r)} and {L(r)} are a-stable
Lévy processes [9,10] and p is a constant.

v

t,0)=

¢,(t,0) Po, P

exp| — |6] +i6 ,
2 2

To see this, argue as follows. For simplicity the index v
for each parameter of the characteristic function is dropped.
We consider a € (0,1)U(1,2]. The same argument can be
applied to the case a=1 with 8=0. We calculate the charac-

teristic function of {¥(r)} and investigate the distribution of
each increment. It is well known that Lévy processes have a
countable number of discontinuities, so the integral on time
may be considered in the Riemann sense:

Y(r) = lim Y, if/(rj),

n—® i1

where  O=ro<r;<---<r,=t and rj—ri_;=t/n for
j=1,2,...,n. Since each a-stable random variable is repre-
sented by its characteristic function, we compute the charac-

teristic function ¢, of Y(o):

l+a, @ 2
gt !
exp{— " av |0|%{1 - iﬁvsgn(ﬁ)tan( ’772(:1’0):| +i0'u; } a, # 1,
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Let V(£)= V(1) V(0) and X(#)=X(r)—X(0). Then, for each

t, V(1) has an a-stable distribution [9] [V(7)
~Sav(t” Ya,, By, t1,)], whose characteristic function ¢, is

&, (t,0)

@ @ . a, T .
=expy — tayv|6|*| 1 —iB,sgn(H)tan ES +iltu, (,

(2.2)

where 0<a,<2, o,#1, B,e[-1,1], 0,>0, and sgn(6)
=1if 6>0, 0 if #=0, and —1 otherwise. For ,=1, we take
B=0:

b,(t,0) = exp(—ta,| 6] + iOu,t). (2.3)

Notationally we write the characteristic function for L(z) the
same as for V(¢) with the subscript v replaced by €. Let

Y(r) = ft V(r)dr.

0
Then Y(¢) can be decomposed as

Y(r) = ft [V(0) + V(r)Jdr=1tV(0) + Y (1),
0

where Y(1)=[{V(r)dr.
For each ¢, the characteristic function ¢, of Y(©) is

(2.4)

,(1.6) = Elexp[i67(1)]} = limE|:exp<i0E ﬁv(rj)) ] .
n—o j=1

Let
A,= E[exp(z’ﬂz %V(q)) ] ;

J=1
then

A,= E|:H exp<i0£\7(r1)>exp(i9£[‘7(l”z) - V(”l)]) o
il n n
Xexp(i@z[{;(rj) - V(”j—l)])
n
:E[exp(i&né?(rﬂ)exp(i&(n - 1)£[\7(r2) - V(rl)])

Xexp(mé[f/(rn) - 17(;’,,_])]” .
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Since V(ry), [V(r))=V(r)],....[V(r,)=V(r,_;)] are inde-
pendent, and so are exp[i&n(t/n)V(rl)],exp{ia(n—1)(t/n)

X[V(r) = V() ... .expli6(e/n)[V(r,) = V(r,_)]}.  There-
fore,

A, = E{exp[iﬁtf/(rl)]}E[exp(iﬁt%[f/(rz) - V(@])] -

to~ -
XE[exp(iG—[V(rn) - V(rn_l)])} )
n
Since {V(#)} has stationary increments, we obtain

A, = E{exp[i0ﬂ7(rl)]]
oon—1~ ot~
XE[exp(zGt—V(rl))] ---E[exp(z&—V(rQ)
n n
el t n—j
= ]._[ ¢v(_a_0t>7

j=0 n n

where r;=t/n. Then,

n-1
o,(t, 0)—hmH ¢v(£, —J ;),

ﬂ*):)cj 0

S

We take the natural logarithm:

n—1
In ¢,(t,6) = lim >, In gf)v(é, ~J t)

II*}OC] 0

and note that
‘i
In ¢,,<—,Uar>
n n
- t'+“a""|0|0‘[1 —iBsgn(6) X tan(?)]

(n_j)a zn_j
+i0ut——.
nl+a e n

2

Hence,

In ¢, (1,6) =—1'"** “|a|“[1 -iB sgn(ﬁ)tan( ;”
n-1 | .
Xllmz (1 ——) +z€,ut hmz ( i).
n—% j=() n n— j—( n n

The infinite sums can be exactly evaluated:

n—1 1 A\ a 1 1
lim > —(1—i> =f (1= x)%dx =

n— j=( n n 0 l+a
giving the desired result.

We investigate properties of the process {¥(r)} further. For
each 7,>0, the natural logarithm of the characteristic func-

tion of Y(1)=Y(z,), t> 1y, is
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|

In (b;o(l, 0) =— [O(l - to)ava-l‘}lv| 6|0‘v|:1 — iﬁvsgn( 0)tan(

(2.5)

The above shows that ¥ (r) does not have stationary incre-
ments.

We next examine the fractal dimension of Y(z). There are
a variety of fractal dimensions in use such as box dimension,
divider dimension, Hausdorff dimension, etc. We refer to
[6,12—14] for the details of the dimensions. It is well known
that the divider Dp and box Dg dimensions of an a-stable
Lévy process are « and max{l,2—1/a} [13], respectively.
When these dimensions are computed, stationarity of the in-
crements of Lévy processes is used. Although ?(t) does not
have stationary increments, we can still calculate the box
dimension of the process.

Consider for a fixed T>0,{Y():0<t<T}. Let
At=T/m, T,=kAt, k=0,1,2,...,m, and for each k define
the random variable R, by

Ry=max{|Y(s) - Y()|:T\_, < r <s<T.}.

Equation (2.5) gives

_ 1/a
’ ) (s=1Z,

?(s)-?(r)i<r+
1+«

where £ means equality in distribution, and Z is a random
variable with a-stable distribution: Z ~Sav(a,B,O). Thus,

Rki|Z|maX{g(r,s):Tk_l sSr<s=s Tk}’

_ 1/a
a r) (s=r).
1+«

where

g(r,s)= <r+

Let Ar=bt with a scaling factor b and a fixed time > 0.
Cover the graph {(z,Y(1)):0<¢<T} of Y(z) by the rectangu-
lar boxes with the dimension (ba) X (bt), where a is a fixed
positive real number. We compute the expected value of the
number of boxes N*'. Since in each subinterval [T}_;, T}], the
number of boxes is R,/ (ba),

At E[Rk]
FINTl= E (ba)

To compute the numerator of the right hand side of (2.6),
note that

(2.6)

E[R,]= E[|Z|Jmax g(r,s)

and (dg/ar)(r,s)<0 and (dg/ds)(r,s)>0 for any positive
real numbers r and s (r<<s). Thus,
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a >l/a
1+«

(2.7)

E[R,]=E[|Z|1g(T_\,T}) = E[|Z|](bt)1+”“<k

and hence

" (bt)l+l/a’ ( B o >I/a
E[N"]=El|Z}= == k21 k=1

m o e
=t1+1/aa—lbl/aE[|Z|]E (k_ " ) .
k=1 + o

Let C(t,a)=t'*"*q~'E[|Z|]. Observe that

m m ]/d m
> (k- )1’“$2< ) <kl (2.8)
k=1 1 l+a k=1
Since
m m 1 k l/a 1
E kl/a=m1+1/a2 _(_) ~ m1+1/af xl/adx
k=1 k=1 MM 0

o
ml+1/a

l+a

for sufficiently large m, the sums of the left and right hand
sides of Eq. (2.8) are the lower and upper sums of the inte-
gral. Thus,

%(k a )l/a o e o (T)1+l/a'
— = m - — J—

=l 1+« l+a 1+ a\bt

(2.9)

and hence
T\ 1+1/a
E[N"] = Lc(;,@(—) b =00,
1+a t

Since E[N*"]=0(b"8), we obtain that the box dimension of
Y(1) is 1 if u,=0.

Benson [15] and Meerschaert et al. [16] have shown that
the density functions of Lévy motions are the solutions of
fractional Fokker-Planck equations. Since Y() is a time in-
tegral of a Lévy motion, a natural question arises: What is
the Fokker-Planck equation for the process Y(¢)?

The forward fractional derivative d*/(dx®) is defined by

Ff 1

ox“ F(n a) ax"

©flx- y)

a+1 -n y’

(2.10)

where n—1< a<n with an integer n [16].
Let f7(r,x) be the density functions of Y(r)—u,2/2 for

each 7. The characteristic function of ?(t)—,u,vtz/ 2 is
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2

(2.11)

I+a, @,

~ t
fr(t,0) = exp{— . |0|“v{1 - i,Bvsgn(B)tan<
1+«

where f; is the Fourier transform of fy. By differentiating f;
with respect to ¢, we have

afy (ta,)®

a cos(ma,/2)

X {cos( 772a ) - zﬁvsgn(ﬁ)sm( )}fy

(2.12)

6]

If @, =2, then we obtain the classical Fokker-Planck equation
by taking the Fourier transform:

iy _ Py
=D

where D(t)=(to,)>. For the general case, by employing the
identity

(—if)* =6 v{cos( ;)—zsgn(ﬁ)mn( 5 )},

setting 3,=1, and taking Fourier transforms, we find

afy dfy
—=D(t y 2 1 3
o (1) P (2.13)
where
—(t @y
D(l‘) — &
cos(ma,/2)

Remark. If 1<a,<2,
D(1)>0.

Remark. Dividing Eq. (2.13) by % gives another form of
Fokker-Planck equation:

—~ @, £~
L

then cos(ma,/2)<0 and so

= s 2.14
ot ox% ( )
where
0
" cos(ma/2)

III. UPSCALING FROM MICROSCALE
TO MESOSCALE

On the microscale we assume the SODE is of the form
t

X(O)(t) = X(O)(O) + f V(O)[X(O)(r)]dr+ p(O)L(O)(t), =0,
0

(3.1)

where VO[X(r)] is assumed stationary, ergodic, and Mar-
kovian with mean V{9, and L©(¢) is an a;-stable Lévy pro-
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cess [LO(r) ~Sa](t”“10'1 ,Br.tpy)] which accounts for the
self-motility (in the case of a microbe) of the particle [8].
Here, the superscript O means microscale. We use 1 for me-
soscale and 2 for macroscale. If @;=2, then LO(¢) reduces to
B(O)(t), a Brownian motion, and the particle need not be mo-
tile. Let X(1) =X (1) - x©(0).

By using the classical central limit theorem [17] it has
been shown that as n— o,

n_l/zfm (VOIXOR] = Var 4 BY(),  (3.2)
0

) ) d o
a Brownian motion, where means convergence in distri-
—

bution.

We next show [X©O(nt)—nt(VO+ ) ]/n"* converges to
an q;-stable Lévy process in distribution as n— .
Clearly for p© a constant, as n— ,

pLN (@),

OLOnr) — ntpy d
p (nt) — nty, (3.3)
—

nl/aL
where L1 (1) ~ Sa](t”“l(r,,ﬁl,O).
In order to use Egs. (3.2) and (3.3), we look at

XO(nr) = ne(VO + ) 1 1™ oo
s =n1/a,-mp (VOLxO ]

OLO ) - li
l/a,

- V(O)}dr

(3.4)

By Eq. (3.2), the first term in the right hand side converges to
zero in distribution if a;# 2. Thus, Eq. (3.3) gives the result
for a;# 2. If a;=2, then the two terms of the right hand side
converge to Brownian motions, respectively. Since the sum
of two Brownian processes is Brownian, we obtain the result.

Remark. For t>0, XD(t) = (VO + w))+ p VLD (z).

IV. SCALING LAWS AND SCALE CHANGE
FOR MESOSCALE CONVECTION

Let V(1) be a,-stable Lévy with 1 <a,<2. We assume
that V(V)(7) has constant mean and V(V(0) has initial distribu-
tion .

EVY(0)=EWVY0) =V forany r=0 (4.1

if @,>1. Since E(V(£))=0 for each time 7, ,u,l()l)=0. Thus,
Vi) ~S, (1"*0,, B,.,0).

Let t=\t'. Define a new random variable

YOO =\’ VD
NG

Ml)(t,) =

=\ (VID(0) = VD) 4+ N1V y (D (N ).
(4.2)

Since N~"er" (V(0) - V(1)) converges to zero in probability
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as N\ — o, it also converges in distribution. For the second
term of the right hand side of Eq. (4.2), we compute the
natural logarithm of its characteristic function:

In E{exp[iN"" "YYW\ ]}

l+a,
—_ o_lc)lv|)\—l—1/ave|avtrl+av

1+«
m,)]
2
Pt

v
=- 03v|0|“v{1 —iﬁusgn(ﬁ)tan<

X [ 1- iﬂvsgn(ﬁ)tan<
1+ a,

Wza”)} (4.3)

Note that Eq. (4.3) is independent of A. Let

lim

YO@) = YO, (4.4)

We have shown that Y?(r)=Y"(z), whose characteristic
function is determined by Eq. (4.3). Thus, for >0 we have

YO() = VD + Y (s). (4.5)
V. TOTAL UPSCALING
Since pMLM(0)=0, for fixed r, pLI(7) has an

a,-stable distribution: pLM(r)~ S, (t”“fo- ,Be t,u ).
We assume periodicity of V(V(r)= V(l)(t &1(0)) in the ini-
tial data:

V@, €9(0) + v) = VI(1,£(0))

for any integer v, where £1(-)=&V(-, w) is a particle path in
the porous medium.
Let

11
Y] = —f—fv“),”o dr dgV(0
[ ]E{lAlAlBlg (1. £ (0 d£(0)

where A=A(w)={&1(0,w):&Y(0,w) €[0,1]} and B=B(w)
={r=0:¢(t,0) e[0,11}.

Our goal is to arrive at a central limit theorem for XM
X (1). To do so, let

XD =\ (VO] + wl?)

(D ery =
Z\(t') = N
' (V) - [V - ,ﬁ”) YOO ) = ne' VO
= NG NG
(M7 ()4
p VLY (')
NG 5.1

As A — o, the first and second terms of the right hand side of
Eq. (5.1) converge to zero and Y@ (#') in distribution, respec-

tively. Consider the last term on the right hand side of Eq.
(5.1). Let
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p(l)L(l)()\t’) .
N

;\1)([/) =

then the natural logarithm of the characteristic function of
(1)(
t') is

DT}
—_ )\l—a(_ae/avtlo_‘;q 0|a€|: 1- lﬁesgn(e)tan(%)}

(5.2)

In E{exp[i """V p DLl

4 iN Ve H,U«?),

where a,# 1. When a,=1 (8=0) it is easily proved that the
characteristic function converges to zero for each 6 as
N — . To obtain pointwise convergence of the characteristic
function, we have to make the exponent of A negative. Note
that

l—ae—ﬂ<0<:>aev(l—a€)<a€. (5.3)

v

We summarize the result. If 2/3<a@,<2, then for

each «a,, Z;l)(t’) converges to Y®@') in distribution. If

1/2<ay=<2/3, then we have convergence under the
constraint
| <a,<—t (5.4)
1 - CY(
Define X@(1) by
X2() = limXV(\1). (5.5)

A—©

Remark. For >0, we can approximate the stochastic pro-
cess XD(1) as

XO(1) = [V + i) + YP(). (5.6)

Thus, X?(f) has the same fractal dimension as Y®(7).

VI. ADVECTION-DISPERSION EQUATIONS

The next goal is to derive the Fokker-Planck (advection-

dispersion) equation that the transition density for X(1) sat-
isfies.

For each 1, )?(2)([) has an a-stable distribution with a den-
sity function f(x,7). Therefore, we consider the natural loga-
rithm of the Fourier transform of f(x,?):

ma, )]
> .

(6.1)

lnf( 0,1)

I+a,

=in?e- 0';’”|0|“v[1 - tisgn(H)tan<

v

Since a,# 1, we can use the approach of [16]:
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i __ M|a|a{cos<ﬂ>
ot cos(ma,/2) 2

)} F+02(i6f). (6.2)

z,BUsgn(O)sm(

By Fourier inversion, we find that if

1<eq,<
—a,

2
1<a,<2 and §<a{$2 (6.3b)
for B,=1 and «a,=2 for B,=0, then f(x,7) is the solution of
the advection-dispersion equation

1% ¢9
i =—p? o D(z)(t)

6.4
ot ox ©6:4)

Ix*’
where v(z)=[V(1)]+,u(€1), D (1) =—(to,)%/cos(ma,/2), and
d®/(dx®) is defined by
Ff__ 1 &
ax* T(n-a)dx"

“flx-y)

a+l-n
y

dy, (6.5)

where n—1< a<n with an integer n [18].

Cushman and Moroni [19] have shown that the fractional
advection-dispersion equation is a special case of their
convolution-Fickian nonlocal advection-dispersion equation.
According to their approach, we can derive the following
conservative form from Egs. (6.4) and (6.5):

D(t jxf dJLCD@( 4,7) (( . iRk A
(6.6)
where 1 <a,=<2 and
D(t - 1) d(DH(y)
T(n - a,)y®*

with the Dirac delta function &(7) and the Heaviside function
H(y).

5(2)(y,t, 7= (6.7)

VII. DISCUSSION

Many natural porous media display a fractal functionality
over some range of scales. One-dimensional porous media
with fractal drift velocity on an intermediate scale have been
studied. On the microscale, particle trajectories were the so-
lution to a SODE with stationary, ergodic, Markov drift ve-
locity and Lévy diffusion. The Lévy diffusion allows for the
study of self-motile particles like flagellated microbes. The
mesoscale fractal Eulerian velocity was assumed to give rise
to a fractal Lagrangian drift velocity with stationary incre-
ments. This velocity was modeled as a Lévy process because
given a fractal with independent increments, one can gener-
ate a Lévy motion with the same fractal dimension and sta-
tistical character. The mesoscale diffusion process was deter-
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mined by the asymptotics of the microscale and the
mesoscale flow was assumed steady and incompressible. The
macroscale physics is controlled solely by the mesoscale as-
ymptotics. The mesoscale flow field was mapped to a peri-
odic lattice to obtain the macroscale field.

Scaling laws in terms of the stability parameter of the
Lévy processes were obtained at both the meso- and macros-
cales. Fractional dispersive equations with positive disper-
sion coefficient were also obtained at these scales. In form,
these latter equations are similar to the Fokker-Planck equa-
tions for Lévy processes except for the time dependence of
the dispersion coefficient.

PHYSICAL REVIEW E 72, 056305 (2005)

There is significant difference between this work and
previous efforts; the drift velocity is assumed fractal as
opposed to the drift trajectory (streamtube). This is consis-
tent with experimental observations [20] for many natural
systems.
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